Logo
Coperta cărții "The Fractal Geometry of the Brain" de autor necunoscut

The Fractal Geometry of the Brain

6.05 LEI
In Stock
Description

?

Description:

Reviews the most intriguing applications of fractal analysis in neuroscience with a focus on current and future potential, limits, advantages, and disadvantages. Will bring an understanding of fractals to clinicians and researchers also if they do not have a mathematical background, and will serve as a good tool for teaching the translational applications of computational models to students and scholars of different disciplines. This comprehensive collection is organized in four parts: (1) Basics of fractal analysis; (2) Applications of fractals to the basic neurosciences; (3) Applications of fractals to the clinical neurosciences; (4) Analysis software, modeling and methodology.

?

?

Table of Contents:

?

Part I: Introduction to Fractal Geometry and Its Applications to Neurosciences

Chapter 1: The Fractal Geometry of?the?Brain: An?Overview

1. 1 From the?Fractal Geometry of?Nature to?Fractal Analysis in?Biomedicine

1. 2 From Euclid to?the?Fractal Metrology

1. 3 The Fractal Geometry of?the?Brain

1. 4 Fractal Dimension and?Neurosciences

References

Chapter 2: Box-Counting Fractal Analysis: A?Primer for?the?Clinician

2. 1 Fractal Analysis: What Does It Measure?

2. 2 How Is a?DF Calculated?

2.

2. 1 Practical Points

2.

2.

1. 1 Statistical Self-Similarity

2.

2.

1. 2 DF and?Density

2.

2.

1. 3 The DF in?Neuroscience

2. 3 Box Counting

2.

3. 1 Sampling, S, and?N in?Box Counting

2.

3. 2 Methodological Issues in?Box Counting

2.

3.

2. 1 Regression Lines

2.

3.

2. 2 Sampling Size, Location, and?Rotational Orientation Bias

2.

3.

2. 3 Box-Counting Solutions

2. 4 Lacunarity

2.

4. 1 Calculating Lacunarity

2.

4. 2 Understanding the?DB and??

2.

4.

2. 1 Pattern Idiosyncrasies

2.

4.

2. 2 Applying Lacunarity

2. 5 Grayscale Volumes and?Box Counting

2. 6 Multifractal Analysis

2.

6. 1 Reading the?Dq Curve

2.

6. 2 Reading the??(?) Curve

2.

6. 3 Applying Multifractal Analysis

2. 7 Subscanning

2. 8 The Validity of?2D Patterns from?4-Dimensional Reality

2.

8. 1 Control and?Calibration

2. 9 Conclusion

References

Chapter 3: Tenets and?Methods of?Fractal Analysis (1/f Noise)

3. 1 Tenets and?Methods of?Fractal Analysis (1/f Noise)

3. 2 Statistical Terms: Parameter, Estimator, Estimate

3. 3 Properties of?1/f Noise: Self-Similarity and?Long Memory

3.

3. 1 Memory

3.

3. 2 Stationarity

3. 4 Fractal Parameters

3.

4. 1 Hurst Coefficient

3.

4. 2 Scaling Exponent (?)

3.

4. 3 Power Spectra

3.

4. 4 Power Exponent

3.

4. 5 Differencing Parameter (d)

3. 5 Estimators of?Fractal Parameters

3. 6 Identification of?Fractal Noise in?Empirical Settings

3. 7 Summary

References

Chapter 4: Tenets, Methods, and?Applications of?Multifractal Analysis in?Neurosciences

4. 1 Introduction

4. 2 Tenets of?Multifractal Analysis

4. 3 Methods of?Multifractal Analysis

4.

3. 1 Time Domain Methods

4.

3.

1. 1 Generalized Fractal Dimensions and?Multifractal Spectrum

4.

3.

1. 2 The ?Sandbox? or Cumulative Mass Method

4.

3.

1. 3 The Large-Deviation Multifractal Spectrum

4.

3.

1. 4 Multifractal Detrended Fluctuation Analysis: MDFA

4.

3.

1. 5 Multifractal Detrended Moving Average: MDMA

4.

3. 2 Time-Frequency Domain Methods

4.

3.

2. 1 Wavelet Transform Modulus Maxima: WTMM

4.

3.

2. 2 Wavelet Leaders-Based Multifractal Analysis: WLMA

4.

3.

2. 3 Multifractional Brownian Motion: mBm

4. 4 Applications of?Multifractal Analysis

4.

4. 1 Electroencephalogram Signal: EEG

4.

4. 2 Brain Imaging

4. 5 Conclusion

References

Part II: Fractals in Neuroanatomy and Basic Neurosciences

Chapter 5: Fractals in?Neuroanatomy and?Basic Neurosciences: An?Overview

5. 1 What About the?Brain?

5. 2 Fractals, Neurons, and?Microglia

5. 3 Brains and?Trees

5. 4 Increase of?the?Fractal Dimension from??Too Smooth to?Too Folded? Human Brains

5. 5 Neuronal Networks

References

Chapter 6: Morphology and?Fractal-Based Classifications of?Neurons and?Microglia

6. 1 A Brief Introduction to?Neurons and?Microglia

6.

1. 1 Neuronal and?Microglial Morphology in?Context

6. 2 Fractal Analysis of?Neurons

6.

2. 1 Fractal Analysis of?Dendritic Arbors

6.

2. 2 Methodological Issues

6.

2.

2. 1 Complementary Methods

6.

2.

2. 2 3D Analysis

6. 3 Microglia

6. 4 Future Directions

References

Chapter 7: The Morphology of?the?Brain Neurons: Box-?Counting Method in?Quantitative Analysis of

7. 1 Introduction

7. 2 Starting from?the?Fractal Geometry Toward?the?Fractal Analysis

7.

2. 1 Fractal Geometry in?2D Space

7.

2. 2 Self-Similarity and?Scaling

7.

2. 3 Fractal Analysis

7. 3 Box-Counting Method

7.

3. 1 Application on?2D Digital Image

7.

3. 2 The Software for?Box-Counting

7. 4 Material

7. 5 Box-Counting Methodology

7.

5. 1 Image Size and?Resolution

7.

5. 2 Image Rotation

7.

5. 3 Image Representation

7. 6 Discussion

References

Chapter 8: Neuronal Fractal Dynamics

8. 1 Synapse Formation from?the?Perspective of?Molecular and?Cellular Biology

8. 2 Fractal Time-Space in?the?Dynamic Process of?Synapse Formation

Appendix

8.

2. 1 Entropy and?Dynamics of?Synapse Formation in?Fractal Time-Space

References

Chapter 9: Does a?Self-Similarity Logic Shape the?Organization of?the?Nervous System?

9. 1 Introduction

9. 2 Structural Self-Similarity of?the?Nervous System

9.

2. 1 Cell Level: Complex Geometry of?Neurons and?Glial Cells

9.

2. 2 Tissue Level

9.

2.

2. 1 Central Nervous System

9.

2.

2. 2 Peripheral Nervous System

9. 3 A Self-Similarity Logic Drives the?Functional Features of?the?CNS

9.

3. 1 Interaction-Dominant Dynamics in?the?CNS

9.

3.

1. 1 The Concept of??Fringe?

9.

3.

1. 2 The Concept of??Lateral Inhibition?

9.

3. 2 Remodeling Processes in?the?Nervous System

9. 4 Concluding Remarks: A?Place for?Self-Similarity in?a?Global Model of?the?Nervous System?

References

Chapter 10: Fractality of?Cranial Sutures

10. 1 Biology of?Skull Suture Development

10. 2 Fundamental Principle of?Fractal Structure Formation: ?The Same Rule Appears on?Different S

10. 3 Models of?Skull Suture Development

10.

3. 1 Eden Collision Model

10.

3. 2 Partial Differential Equation (PDE)-Based Model and?the?Koch Curve

10.

3. 3 Mechanics-Based Model and?DLA

10. 4 Future Directions

10.

4. 1 Other Classes of?Models That Generate Fractal Structures

10.

4. 2 Experimental Verification of?Theoretical Models

10.

4. 3 Fractal Suture Analysis and?Craniosynostosis in?a?Clinical Setting

References

Chapter 11: The Fractal Geometry of?the?Human Brain: An?Evolutionary Perspective

11. 1 Introduction

11. 2 Principles of?Brain Evolution

11.

2. 1 Evolution of?the?Cerebral Cortex

11.

2. 2 Mechanisms of?Cortical Folding

11.

2. 3 Scaling of?the?Primate Neocortex

11. 3 Fractal Geometry of?Convoluted Brains

11.

3. 1 Principles of?Scaling

11.

3. 2 Fractal Scaling of?the?Neocortex

11. 4 Fractal Principles of?Neural Wiring

11.

4. 1 Neocortical Wiring

11.

4. 2 Neural Network Communication

11.

4. 3 Limits to?Information Processing

11. 5 Concluding Remarks

References

Part III: Fractals in Clinical Neurosciences

Chapter 12: Fractal Analysis in?Clinical Neurosciences: An?Overview

12. 1 Clinical Neurology and?Cerebrovascular System

12. 2 Neuroimaging

12. 3 Neurohistology, Neuropathology, and?Neuro-oncology

12. 4 Fractal-Based Time-Series Analysis in?Neurosciences

12. 5 Cognitive Sciences, Neuropsychology, and?Psychiatry

12. 6 Limitations of?Application of?Fractal Analysis into?Clinical Neurosciences

12.

6. 1 The ?Black Box?

References

Chapter 13: Fractal Analysis in?Neurological Diseases

13. 1 Geometric Fractal Analysis Applied to?Neuroscience

13. 2 Use of?Dynamic Fractal Analysis in?Neurology

13. 3 Diagnostic Precision of?Fractal Dimension

13.

3. 1 Depression and?Schizophrenia

13.

3. 2 Alzheimer?s Disease and?Autism

13.

3. 3 Epilepsy

13.

3. 4 Neural Loss in?Retinal Tissue

13.

3. 5 Brain Tumors

13. 4 Conclusion and?Future Perspectives

References

Chapter 14: Fractal Dimension Studies of?the?Brain Shape in?Aging and?Neurodegenerative Diseases

14. 1 Introduction

14.

1. 1 Anatomical Shape Features of?Interest

14.

1. 2 Fractal Dimension Methods

14. 2 Fractal Dimension Studies of?the?Brain Shape

14.

2. 1 Aging

14.

2. 2 Alzheimer?s Disease

14.

2. 3 Amyotrophic Lateral Sclerosis

14.

2. 4 Epilepsy

14.

2. 5 Multiple Sclerosis

14.

2. 6 Multiple System Atrophy

14.

2. 7 Stroke

14. 3 Discussion

References

Chapter 15: Fractal Analysis in?Neurodegenerative Diseases

15. 1 Alzheimer?s Disease and?Vascular Dementia

15.

1. 1 Fractal Dimension: A?Classifier for?the?AD Pathology

15.

1. 2 Imaging and?Fractal Analysis in?AD

15. 2 Other Neurodegenerative Diseases

15. 3 Conclusion

References

Chapter 16: Fractal Analysis of?the?Cerebrovascular System Physiopathology

16. 1 Introduction

16. 2 Cerebral Autoregulation as?a?Feedback Loop

16. 3 Variability and?Complexity

16. 4 Methodology of?Variation and?Fractal Analysis

16. 5 Hurst Coefficient HbdSWV

16. 6 Spectral Index ?

16. 7 Spectral Exponent ?

16. 8 Fractal Analysis of?Human CBF

16. 9 Decomplexification

16. 10 Frequency-Dependent CBF Variability

16. 11 Conclusions

References

Chapter 17: Fractals and?Chaos in?the?Hemodynamics of?Intracranial Aneurysms

17. 1 Introduction

17. 2 Fractal Patterns in?Time-Dependent Flows

17. 3 Basic Concepts Demonstrated on?a?Simplified 2D Case

17. 4 Measuring Chaotic Quantities from?Residence Times

17. 5 Appearance of?Chaotic Flow Inside?Intracranial Aneurysms

17. 6 Concluding Remarks

References

Chapter 18: Fractal-Based Analysis of?Arteriovenous Malformations (AVMs)

18. 1 Introduction

18. 2 Neuroimaging of?AVMs

18. 3 AVMs? Angioarchitecture Morphometrics

18. 4 Computational Fractal-Based Analyses of?AVMs

18.

4. 1 AVMs? Fractal Dimension

18.

4. 2 Fractal Dimension of?the?Nidus and?Its Relevance in?Radiosurgery

18. 5 Limitations

18. 6 Computational Techniques for?the?Automatic Nidus Identification

18. 7 Conclusion

References

Chapter 19: Fractals in?Neuroimaging

19. 1 Introduction

19. 2 Fractals in?Brain Magnetic Resonance Image Classification

19. 3 Other Applications of?Fractal Analysis in?Neuroimaging

19. 4 Conclusion and?Future Perspective

Appendix: Fractal Analysis Techniques

Range-Scale-Based Hurst Exponent

Detrended Fluctuation Analysis

Generalized Hurst Exponent

References

Chapter 20: Computational Fractal-Based Analysis of?MR Susceptibility-Weighted Imaging (SWI) in?Ne

20. 1 Introduction

20. 2 Technical Aspects of?SW Imaging

20. 3 SWI in?Neuro-oncology

20.

3. 1 Morphometrics and?Fractal-Based Analysis of?SWI in?Brain Tumors

20. 4 Future Perspective of?SWI in?Neurotraumatology

20. 5 Limitations

20. 6 Conclusion

References

Chapter 21: Texture Estimation for?Abnormal Tissue Segmentation in?Brain MRI

21. 1 Introduction

21. 2 Background Review

21.

2. 1 Fractal (PTPSA) Texture Feature Extraction

21.

2. 2 Multi-fractal Brownian Motion (mBm) Process and?Feature Extraction

21. 3 Methodology

21.

3. 1 Preprocessing

21.

3. 2 Feature Extraction, Fusion, Ranking, and?Selection

21.

3. 3 Classification with?Random Forest

21. 4 Results and?Discussion

21. 5 Conclusion and?Future Work

References

Chapter 22: Tumor Growth in?the?Brain: Complexity and?Fractality

22. 1 Introduction

22. 2 Fractal Dimension and?Brain Tumors

22. 3 The Scaling Analysis Approach

22. 4 Data Time-Like Series, Visibility Graphs, and?Complex Networks

22. 5 Conclusions and?Future Prospects

References

Chapter 23: Histological Fractal-Based Classification of?Brain Tumors

23. 1 Introduction

23. 2 Fractal Morphometry of?Tissue Complexity

23.

2. 1 Fractal Dimension Estimation

23.

2. 2 Related Work

23. 3 Automated Histopathological Image Analysis

23.

3. 1 Image Preparation

23.

3. 2 Pre-processing and?Focal Regions Segmentation

23.

3. 3 Feature Extraction and?Classification

23.

3. 4 Qualitative Enhancement and?Grading Results

23. 4 Characterizing Tissue via Fractal Properties

23. 5 Quasi-fractal Texture Representation

23. 6 Multi-fractality Analysis

23.

6. 1 Assessing Fractal Texture Heterogeneity

23.

6. 2 Performance Under Tissue Distribution Variation

23. 7 Diagnostic Challenges and?Future Perspectives

23. 8 Conclusion

References

Chapter 24: Computational Fractal-Based Analysis of?Brain Tumor Microvascular Networks

24. 1 Introduction

24. 2 Brain Tumors and?Vascularization

24.

2. 1 Immunohistochemistry (IHC)

24. 3 Morphometrics of?Microvascularity

24.

3. 1 Euclidean-Based Parameters

24.

3. 2 Image Analysis

24. 4 Fractal-Based Morphometric Analyses of?Microvessels

24.

4. 1 Microvascular Fractal Dimension (mvFD)

24.

4. 2 Local Fractal Dimension and?Local Box-Counting Dimension

24. 5 Fractal-Based Analysis of?the?Angio-Space in?Brain Pathology

24. 6 Limitations

24. 7 Future Perspectives and?Conclusion

References

Chapter 25: Fractal Analysis of?Electroencephalographic Time Series (EEG Signals)

25. 1 Introduction

25. 2 Nonlinearity and?Nonstationarity

25. 3 Fractal Analysis of?EEG

25. 4 Examples of?Application of?Fractal Analysis to?EEG Signals

25.

4. 1 Seasonal Affective Disorder: Artifacts in?EEG May Be?Important for?Diagnosis

25.

4. 2 Sleep Staging: One May Analyze Raw EEG Data Without?Artifact Elimination

25.

4. 3 Influence of?Electromagnetic Fields: Comparing Qualitative Features of?Df(t)

25.

4. 4 Epileptic Seizures and?Epileptic-Like Seizures in?Economic Organisms

25.

4. 5 Psychiatry: Assessing Effects of?Electroconvulsive Therapy

25.

4. 6 Anesthesiology: Monitoring the?Depth of?Anesthesia

25. 5 Conclusions

References

Chapter 26: On Multiscaling of?Parkinsonian Rest Tremor Signals and?Their Classification

26. 1 Introduction

26. 2 Multifractal Detrended Fluctuation Analysis for?Nonstationary Time Series

26. 3 Evidence of?Multiscaling in?Parkinsonian Rest Tremor Velocity Signals

26. 4 Concluding Remarks and?Future Research Perspectives

References

Chapter 27: Fractals and?Electromyograms

27. 1 Introduction

27. 2 Surface Electromyogram (sEMG)

27.

2. 1 Generation of?sEMG

27.

2. 2 Factors That Influence sEMG

27. 3 Fractal Analysis of?sEMG

27.

3. 1 Self-Similarity of?sEMG

27. 4 Method to?Determine Fractal Dimension

27. 5 Computation of?Fractal Dimension Using Higuchi?s Algorithm

27. 6 Relation of?FD to?sEMG

27. 7 Age-Related Decrease in?Fractal Dimension of?Surface Electromyogram

27. 8 Summary

References

Chapter 28: Fractal Analysis in?Neuro-ophthalmology

28. 1 Eye and?Nervous System

28. 2 Retinal Microvascular Networks and?Ophthalmopathies

28. 3 Our Experience: Neuro-ophthalmological Disorders

28.

3. 1 Optic Neuritis Versus?Nonarteritic Anterior Ischemic Optic Neuropathy: Retinal Microvascular

28.

3.

1. 1 Patients

28.

3.

1. 2 Image Analysis

Entropy, D1

28.

3.

1. 3 Statistical Analysis

28.

3.

1. 4 Results

28.

3. 2 Sjogren?s Syndrome: Corneal Nerve Plexus

28.

3.

2. 1 Patients

28.

3.

2. 2 Image Analysis

Geometric Complexity, D0

28.

3.

2. 3 Statistical Tests

28.

3.

2. 4 Results

28. 4 Discussion

References

Chapter 29: Fractals in?Affective and?Anxiety Disorders

29. 1 Introduction

29. 2 Fractals and?Affective Disorders

29. 3 Fractals and?Anxiety Disorders

29. 4 Fractals in?Affective and?Anxiety Disorders Treatments

29. 5 Conclusions

References

Chapter 30: Fractal Fluency: An?Intimate Relationship Between the?Brain and?Processing of?Fracta

30. 1 Introduction: The?Complexity of?Biophilic Fractals

30. 2 Fractal Fluency

30. 3 Enhanced Performance and?Fractal Aesthetics

30. 4 Conclusion: The?Brave New World of?Neuro-Aesthetics

References

Part IV: Computational Fractal-Based Neurosciences

Chapter 31: Computational Fractal-Based Neurosciences: An?Overview

31. 1 How to?Compute Fractals in?Clinical Neurosciences

31. 2 Fractals in?Bioengineering and?Artificial Intelligence

31. 3 Conclusive Remarks: Towards?a?Unified Fractal Model of?the?Brain?

Chapter 32: ImageJ in?Computational Fractal-Based Neuroscience: Pattern Extraction and?Translation

32. 1 Introduction

32. 2 What Is ImageJ?

32.

2. 1 Removing Barriers with?Free, Open-Source Software

32.

2. 2 Shaping Computational Fractal-Based Neuroscience

32.

2.

2. 1 Making Fractal Analysis Accessible and?Customizable

32. 3 Where Does IJ Fit in?Fractal-Based Neuroscience Today?

32. 4 Pattern Extraction

32.

4. 1 Pattern Types

32.

4. 2 Extraction Methods

32.

4.

2. 1 Built-in Functions

32.

4.

2. 2 Tracing Plug-Ins

32.

4.

2. 3 Thresholding

32.

4.

2. 4 Customized Pattern Extraction Methods

32. 5 Conclusion

References

Chapter 33: Fractal Analysis in?MATLAB: A?Tutorial for?Neuroscientists

33. 1 MATLAB Packages and?Toolboxes for?Fractal Analysis

33. 2 MATLAB Examples: Fractal Dimension Computation for?1D, 2D, and?3D Sets

33.

2. 1 EEG Fractal Dimension

33.

2. 2 Brain MRI Fractal Dimension of?the?Gray Matter with?FracLab

33.

2. 3 Fractal Dimension Computation of?an?MRI Volume of?the?Brain White Matter with?a?Boxcoun

33. 3 Other Software and?Online Resources for?Fractal Analysis

33. 4 Conclusions

References

Chapter 34: Methodology to?Increase the?Computational Speed to?Obtain the?Fractal Dimension Usin

34. 1 An Introduction to?GPU Programming

34.

1. 1 NVIDIA CUDA

34.

1. 2 OpenCL

34. 2 Previous Work

34. 3 Box-Counting Algorithm

34. 4 GPU Implementation

34. 5 Results

34.

5. 1 Hardware and?Test Models

34.

5. 2 Implementation Results

34. 6 Discussion, Conclusions, and?Future Work

References

Chapter 35: Fractal Electronics as?a?Generic Interface to?Neurons

35. 1 Introduction

35. 2 Fabrication of?the?Fractal Interconnects

35. 3 Functionality of?the?Fractal Interconnects

35. 4 The Biophilic Interface

35. 5 Conclusions

References

Chapter 36: Fractal Geometry Meets Computational Intelligence: Future Perspectives

36. 1 Introduction

36. 2 Fractal Analysis and?Brain Complexity

36. 3 Computational Intelligence Methods and?the?Challenge of?Processing Non-geometric Input Space

36. 4 On the?Interplay Between?Fractal Analysis and?CI Methods

36. 5 Future Perspectives and?Concluding Remarks

References

Erratum to: The Fractal Geometry of the Brain

Index

?

?

?

Details
  • ISBN: 9781493939930
  • Authors: Di Ieva
  • Language: en
  • Publication Year: 2016
  • Pages: 607
  • Dimensions: 23.39 × 15.6 × 3.33
Ratings
to add a review
Reviews
  • No Review Found